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Just as everybody must strive to learn language and
writing before he can use them freely for expression of his
thoughts, here too there is only one way to escape the weight
of formulas.  It is to acquire such power over the tool that,
unhampered by formal technique, one can turn to the true
problems.

�  Hermann Weyl [4]

 This paper is about the use of language as a tool for teaching
mathematical concepts. In it, I want to show how making the syntactical
and rhetorical structure of mathematical language clear and explicit to
students can increase their understanding of fundamental mathematical
concepts.  I confess that my original motivation was partly self-defense: I
wanted to reduce the number of vague, indefinite explanations on home-
work and tests, thereby making them easier to grade.  But I have since
found that language can be a major pedagogical tool.  Once students
understand HOW things are said, they can better understand WHAT is
being said, and only then do they have a chance to know WHY it is said.
Regrettably, many people see mathematics only as a collection of arcane
rules for manipulating bizarre  symbols � something far removed from
speech and writing.  Probably this results from the fact that most elemen-
tary mathematics courses � arithmetic in elementary school, algebra and
trigonometry in high school, and calculus in college � are procedural
courses focusing on techniques for working with numbers, symbols, and
equations.  Although this formal technique is important, formulae are not
ends in themselves but derive their real importance only as vehicles for
expression of deeper mathematical thoughts.  More advanced courses �
such as geometry, discrete mathematics, and abstract algebra � are con-
cerned not just with manipulating symbols and solving equations but
with understanding the interrelationships among a whole host of sophis-
ticated concepts.  The patterns and relationships among these concepts
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constitute the �true problems� of mathematics.  Just as procedural math-
ematics courses tend to focus on  �plug and chug� with an emphasis on
symbolic manipulation, so conceptual mathematics courses focus on proof
and argument with an emphasis on correct, clear, and concise expression
of ideas.  This is a difficult but crucial leap for students to make in
transitioning from rudimentary to advanced mathematical thinking.  At
this stage, the classical trivium of grammar, logic, and rhetoric becomes an
essential ally.

There is, in fact, a nearly universally accepted logical and rhetorical
structure to mathematical exposition.   For over two millennia serious
mathematics has been presented following a format of definition-theorem-
proof.  Euclid�s Elements from circa 300 BC codified this mode of presen-
tation which, with minor variations in style, is still used today in journal
articles and advanced texts. There is a definite rhetorical structure to each
of these three main elements:  definitions, theorems, and proofs.  For the
most part, this structure can be traced back to the Greeks, who in their
writing explicitly described these structures.  Unfortunately, this structure
is often taught  today by a kind of osmosis.  Fragmented examples are
presented in lectures and elementary texts. Over a number of years, tal-
ented students may finally unconsciously piece it all together and go on
to graduate school. But the majority of students give up in despair and
conclude that mathematics is just mystical gibberish

With the initial support of a grant from Clemson�s Pearce Center for
Technical Communication and the long-term moral support of the Commu-
nication Across the Curriculum program, I have been working for several
years now on developing teaching strategies and developing teaching
materials for making the syntactical and logical structure of mathematical
writing clear and explicit to students new to advanced mathematics.  The
results have been gratifying:  if the rules of the game are made explicit,
students can and will learn them and use them as tools to understand
abstract mathematical concepts.  Several years ago, I had the opportunity
of sharing these ideas with the Occasional Seminar on Mathematics Edu-
cation at Cornell, and now through this paper, I hope to share them with a
wider audience.

One should NOT aim at being possible to understand, but at
being IMPOSSIBLE to misunderstand.

�  Quintilian, circa 100 AD

The use of language in mathematics differs from the language of
ordinary speech in three important ways.  First it is nontemporal � there
is no past, present, or future in mathematics.  Everything just �is�.  This
presents difficulties in forming convincing examples of, say, logical prin-
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ciples using ordinary subjects, but it is not a major difficulty for the stu-
dent.  Also, mathematical language is devoid of emotional content, al-
though informally mathematicians tend to enliven their speech with phrases
like �Look at the subspace killed by this operator� or �We want to increase
the number of good edges in the coloring.�  Again, the absence of emo-
tion from formal mathematical discourse or its introduction in informal
discourse presents no difficulty for students.

The third feature that distinguishes mathematical from ordinary lan-
guage, one which causes enormous difficulties for students, is its preci-
sion.  Ordinary speech is full of ambiguities, innuendoes, hidden agendas,
and unspoken cultural assumptions.  Paradoxically, the very clarity and
lack of ambiguity in mathematics is actually a stumbling block for the
neophyte. Being conditioned to resolving ambiguities in ordinary speech,
many students are constantly searching for the hidden assumptions in
mathematical assertions.  But there are none, so inevitably they end up
changing the stated meaning � and creating a misunderstanding.  Con-
versely, since ordinary speech tolerates so much ambiguity, most stu-
dents have little practice in forming clear, precise sentences and often lack
the patience to do so.  Like Benjamin Franklin they seem to feel that
mathematicians spend too much time �distinguishing upon trifles to the
disruption of all true conversation.�

But this is the price that must be paid to enter a new discourse
community.  Ambiguities can be tolerated only when there is a shared
base of experiences and assumptions.  There are two options: to leave the
students in the dark, or to tell them the rules of the game.  The latter
involves providing the experiences and explaining the assumptions upon
which the mathematical community bases its discourse.  It requires pains-
taking study of details that, once grasped, pass naturally into the routine,
just as a foreign language student must give meticulous attention to de-
clensions and conjugations so that he can use them later without con-
sciously thinking of them.  The learning tools are the same as those in a
language class: writing, speaking, listening, memorizing models, and learn-
ing the history and culture.   Just as one cannot read literature without
understanding the language, similarly in mathematics (where �transla-
tion� is not possible) this exacting preparation is needed before one can
turn to the true problems.  Thus it has become an important part of all my
introductory courses, both at the undergraduate and graduate level.

This paper is a report on my efforts to make the rhetorical and syn-
tactical structure of mathematical discourse explicit and apparent to the
ordinary student.  For concreteness sake, it is based on examples from a
College Geometry course for juniors majoring in Secondary Mathematics
Education.  The same principles and goals apply, however, from freshman
discrete mathematics for computer science majors to the linear algebra
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course for beginning math graduate students.  As such it is about teach-
ing and learning the tool of language in mathematics and not about grap-
pling with the deeper problems such as the discovery of new mathematics
or the heuristic exposition of complex mathematical ideas or the emotional
experience of doing mathematics.  As important as these deeper problems
are, they cannot be approached without first having power over the tool
of language.  Mastering the trivium is necessary before the quadrivium
can be approached.

Mathematics cannot be learned without being understood
� it is not a matter of formulae being committed to memory
but of acquiring a capacity for systematic thought.

�   Peter Hilton [3]

Systematic thought does not mean reducing everything to symbols
and equations � even when that is possible.  Systematic thought also
requires precise verbal expression.  Since serious mathematics is usually
communicated in the definition-theorem-proof format, the first step in learn-
ing the formal communication of mathematics is in learning definitions.
For this reason, and because it requires the least technical sophistication,
I will illustrate my general methodology with definitions. Although the
examples below are kept elementary for the sake of the general reader, the
principles they illustrate become even more critical the more advanced the
material.   This is sometimes a difficult point for students, who may not
understand the need for meticulous precision with elementary concepts.
But to have the technique needed to deal with complicated definitions,
say the definitions of equivalence relations or of continuity, it is neces-
sary to first practice with simple examples like the definition of a square.

Let us begin with a definition of definitions and some examples of
good and bad definitions.  A definition is a concise statement of the basic
properties of an object or concept which unambiguously identify that
object or concept. The italicized words give the essential characteristics
of a good definition.  It should be concise and not ramble on with extrane-
ous or unnecessary information.   It should involve basic properties,
ideally those that are simply stated and have immediate intuitive appeal.  It
should not involve properties that require extensive derivation or are hard
to work with.  In order to be complete, a definition must describe exactly
the thing being defined � nothing more, and nothing less.

GOOD DEFINITION: A rectangle is a quadrilateral all
four of whose angles are right angles.
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POOR DEFINITION:  A rectangle is a parallelogram in
which the diagonals have the same length and all the angles
are right angles.  It can be inscribed in a circle and its area is
given by the product of two adjacent sides.

This is not CONCISE.  It contains too much information, all of which
is correct but most of which is unnecessary.

POOR DEFINITION:  A rectangle is a parallelogram
whose diagonals have equal lengths.

This statement is true and concise, but the defining property is not
BASIC.  This would work better as a theorem to be proved than as a
definition.  In mathematics, assertions of this kind are regarded as charac-
terizations rather than as definitions.

BAD DEFINITION:  A rectangle is a quadrilateral with
right angles.

This is AMBIGUOUS.  With some right angles?  With all right angles?
There are lots of quadrilaterals that have some right angles but are not
rectangles.

UNACCEPTABLE  DEFINITION:
rectangle:  has right angles

This is unacceptable because mathematics is written as English is
written � in complete, grammatical sentences.  Such abbreviations fre-
quently hide major misunderstandings as will be pointed out below.

In Aristotle�s theory of definition, every �concept is defined as a
subclass of a more general concept.  This general concept is called the
genus proximum.  Each special subclass of the genus proximum is charac-
terized by special features called the differentiae specificae.� [1, p. 135]
We will refer to these simply as the genus and species.  In each example
above, the italicized word is the genus.  In the case of rectangle, the genus
is the class of quadrilaterals and the species is the requirement that all
angles be right angles.  One of the greatest difficulties students experi-
ence with new concepts is that they fail to understand exactly what the
genus is to which the concept applies.  The unacceptable definition above
skirts this issue by avoiding the genus altogether.  To illustrate the impor-
tance of genus, note that we cannot say:
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These two points are parallel.
This triangle is parallel.
The function f(x) = 3x + 1 is parallel.
35 is a parallel number.

The term �parallel� has as its genus the class of pairs of lines (or
more generally, pairs of curves).  Any attempt to apply the word �parallel�
to other kinds of objects, like pairs of points, triangles, functions, or num-
bers, results not in a �wrong� statement but in nonsense.  Note that the
nonsense is not grammatical, but rhetorical.  The four statements above
are all perfectly grammatical English sentences, but none of them makes
sense because of the inappropriate genus.  Students only rarely make
nonsensical statements like the four above because the genus is on a
sufficiently concrete level that confusion is unlikely.  However, when sev-
eral layers of abstraction are superimposed, as is common in modern math-
ematics, nonsense statements become more common.  Let us look at a
specific abstract example.

In geometry parallelism, congruence, and similarity are all ex-
amples of the general notion of an equivalence relation. Equivalence rela-
tions abstract the basic properties of �sameness� or equality � for ex-
ample, similar triangles have the same shape and parallel lines have equal
slopes.  Euclid includes one such property of equivalence relations as the
first of his common notions:  �Things which are equal to the same thing
are also equal to one other.� [3]  In modern terms, this property is called
�transitivity� and is enunciated formally as follows:

A relation R on a set X is transitive if and only if for all
choices of three elements a, b, and c from X, if a is related to b
and b is related to c, then a must also be related to c.

Let us look at this definition from the standpoints of rhetoric, gram-
mar, and logic.  Rhetorically, there are three layers of abstraction in this
definition: first, the objects or elements (which are abstract rather than
definite), then the set X of such objects, and finally the relation R on this
set.  Students struggling with these layers of abstraction tend to get them
confused and may say:

�a, b, and c are not transitive but e, f, and g are.�
�The set X is transitive.�

Such statements do not make sense because they attempt to apply
the term �transitive� at a lower layer of abstraction than its genus requires.
Although it may be possible to guess what the student has in mind, it is
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important to stress that this is not enough, as the Quintilian quote empha-
sizes.

The definition of transitivity also illustrates the absence of ambigu-
ity.  There is no hidden assumption that a is related to b. There is no
hidden assumption that a and c must be different.  These assumptions are
not left up to the discretion of the student or the whim of the professor.
They are simply not there.  Yet these assumptions are often tacitly made
by students trying to understand transitivity.

Grammatically, students have a tendency to use the active voice �a
relates to b� rather than the passive �a is related to b�, which is standard
mathematical usage.  Attention to this single, simple linguistic detail seems
to heighten the focus on listening for proper usage and as a consequence
proper understanding.  Students who are attentive and disciplined enough
to pick up this minor detail, which incidentally I repeatedly stress, gener-
ally are more secure with the concepts and more likely to apply them
correctly.  Shallow listening leads to shallow understanding.  Here the
difference is not a significant one conceptually, but it is a difference which
is universal in the culture of mathematical discourse and thus is a shibbo-
leth for distinguishing a �native speaker� from an outsider.

Of course, understanding the definition of transitivity also requires
understanding the logical structure of the species.  In this case, the spe-
cies involves two logical connectives:  AND  (logical conjunction) and IF
... THEN (implication) preceded by a universal quantifier FOR ALL.  All of
these present major difficulties for many students due to the comparative
sloppiness of ordinary speech.  For example, �any� is an ambiguous word
since it can be used in both the universal and existential senses:

Can anyone work this problem? (existential quantifier)
Anyone can do it! (universal quantifier)

For this reason I urge students to avoid the use of �any� when
trying to learn the use of quantifiers. Although much more could be said
on these issues, for brevity let me turn immediately to the one which is by
far most important and most difficult:  implication.

Implications are the backbone of mathematical structure.  Many
definitions (like transitivity) involve implications and almost all theorems
are implications with a hypothesis and a conclusion.  Like the Eskimo
�snow,� the phenomenon is so pervasive in mathematical culture that we
have evolved many different ways of expressing it.  Here are eight differ-
ent but  equivalent ways of stating that squares are rectangles, with names
for some of the variations given on the side:
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1)  If a figure is a square, then it is a rectangle. Hypothetical
2)  A figure is a square only if it is a rectangle.
3)  A figure is a rectangle whenever it is a square.
4)  All squares are rectangles. Categorical
5)  For a figure to be a square, it must neces-
       sarily be a rectangle. Necessity
6)  A sufficient condition for a figure to be a
       rectangle is that it be a square. Sufficiency
7)  A figure cannot be a square and fail to be
       a rectangle. Conjunctive
8)  A figure is either a rectangle or it is not
      a square. Disjunctive

There are three major issues involved in understanding implica-
tions.  Two of these are purely logical:

1)   realizing that an implication is not the same as a
conjunction:

�If quadrilateral ABCD is a square, then it is a rectangle.�
is not the same as

�Quadrilateral ABCD is a square and a rectangle.�

2)   realizing that an implication is not the same as its
converse:

�If quadrilateral ABCD is a square, then it is a rectangle.�
is not the same as

�If quadrilateral ABCD is a rectangle, then it is a square.�

The third issue is a more subtle rhetorical issue involving a grasp of
the relationship between premise and conclusion.  The relationship is not
one of causality, and the premise and conclusion can be implicit in a turn
of phrase that is not an explicit if-then statement.  An excellent exercise is
to give students a dozen or so implications, expressed in different ways,
and ask them to find the premise and conclusion in each.  Then ask them
to reformulate each implication in several different ways, just as I did
above for �Squares are rectangles.�  It is not necessary, and in fact in some
ways undesirable, for the students to understand the meaning of the
statements.  The point here is that these are syntactical exercises, and it is
enough to have a feel for the language and an understanding of syntax to
be successful.  It does not depend on the actual meaning.  At this point as
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in the learning of definitions, I stress that the results must read and sound
like good English sentences.

How is all of this implemented in the classroom?  As I said above, I
proceed similarly to teaching a foreign language.  Early in the semester, I
present the students with a list of roughly twenty common geometrical
terms, such as, circle, square, trapezoid and midpoint, and for homework
ask them to write out definitions.  I provide them with the following �Guide-
lines for Definitions in Good Form�:

1.  A definition MUST be written as a complete,
grammatically correct English sentence.

2.    A definition MUST be an �if and only if� statement.
3.    A definition MUST have a clearly stated genus and a

clearly stated species.
4.    The quantifiers in a good definition MUST be explicitly

and clearly stated.
5.    The term being defined MUST be underlined.

The next few class periods are spent with students putting their
definitions on the board.  The class and I critique them according to the
principles outlined above.  This invariably brings to the fore many issues,
ranging from a reluctance to write in complete sentences and a decided
preference for symbols over words to the syntactical issues described
above.  Many misconceptions can be brought to light and usually cor-
rected.  I also call on students to state definitions verbally.  By engaging
both speaking and writing, I hope to more deeply and actively penetrate
the students� thinking.

We also explore the meaning of the definitions, the range of choices
available, and some of the history involved.  For example,  Aristotle (384 -
322 BC) insisted that the subclasses (species) of each genus be disjoint:
they could not overlap and one subclass could not include another. Thus
for Aristotle, a square was NOT a rectangle.  [1, p. 136]  From the modern
point of view this is inconvenient.  Virtually everything one wants to
prove about non-square rectangles also holds for squares, so it is a nui-
sance to have to state and prove two separate theorems.  The modern
standard is that squares are special cases of rectangles, so theorems about
rectangles also apply to squares.

Finally, students are assigned to groups, first to provide feedback
on the members� definitions and later to compile as a group a list of �stan-
dard� definitions in good form  for all the given terms.

I do not require students to memorize common geometric defini-
tions, but when we reach the abstraction of transitivity and equivalence
relations, I provide models which must be memorized.  There are two main
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reasons for this.  First, it is not possible to have a good class discussion
involving these concepts if students must constantly flip through their
notes to look up the definitions.  Second, the definitions I provide are
models of good mathematical expression, something which is often lack-
ing in elementary texts. Students can use these models to help build their
own definitions (and later, theorems and proofs), but most importantly,
repeating them out loud and memorizing them helps develop an ear for
how correct mathematical discourse should sound.

ΑΓΕΩΜΕΤΡΗΤΟΣ   ΜΗ   ΕΙΣΙΤΩ
�Let no one ignorant of geometry enter here�

�  Plato, now the Motto of the American
       Mathematical Society

In conclusion, I want to confess what my real goals are in teaching
this material.  In a society in which information is passed in 60 second
sound bites and reasoning limited to monosyllabic simple sentences, care-
ful, analytic thinking is in danger of extinction.  And this is a grave danger
in a democratic society beset by a host of very complex moral and social
problems.  When geometry passed from the pragmatic, monarchical Egyp-
tian surveyors to the democratic Greek philosophers nearly three millen-
nia ago, its purpose changed.  True, geometry (and  more generally math-
ematics) has been many practical applications.  But that is not why geom-
etry has retained a universal place in the curriculum.  It has been taught to
teach reasoning and intellectual discipline.  This why Plato placed his
famous motto over the academy door.  That is why Abraham Lincoln
studied Euclid.  And that remains my main goal in teaching.

Notes

1.   Lucas Bunt, P. S. Jones, and J. D. Bedient, The Historical Roots
of Elementary Mathematics, Dover, New York, 1988.

2.  Euclid, The Thirteen Books of The Elements (Sir Thomas L. Heath,
trans.), Volume I, Dover, New York, 1956, p. 222..

3.  Peter Hilton,  �A Job on Our Hands� in FOCUS, Newsletter of the
MAA,  March, 1986.

4.  Herman Weyl,   Space-Time-Matter, New York, Dover, 1922.




